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TWO-DIMENSIONAL FLOCKING HYDRODYNAMICS
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Abstract. We study the systems of Euler equations which arise from agent-based dynamics driven
by velocity alignment. It is known that smooth solutions of such systems must flock, namely —
the large time behavior of the velocity field approaches a limiting “flocking” velocity. To address
the question of global regularity, we derive sharp critical thresholds in the phase space of initial
configuration which characterize the global regularity and hence flocking behavior of such two-
dimensional systems. Specifically, we prove for that a large class of sub-critical initial conditions
such that the initial divergence is “not too negative” and the initial spectral gap is “not too large”,
global regularity persists for all time.
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1. Flocking hydrodynamics

We consider the system of Eulerian dynamics where the density ρ(x, t) and velocity field u(x, t) =
(u1, . . . un) : Rn × R+ 7→ Rn are driven by nonlocal alignment forcing,

ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
a(x, y, t)(u(y, t)− u(x, t))ρ(y, t)dy

 (x, t) ∈ Rn × R+. (1.1)

A solution (ρ,u) is sought subject to the compactly supported initial density ρ(x, 0) = ρ0(x) ∈
L1
+(Rn) and uniformly bounded initial velocity u(x, 0) = u0(x) ∈W 1,∞(Rn). The alignment forcing

on the right hand side of (1.1) involves the non-negative interaction kernel a(x, y, t).
Such systems arise as macroscopic realization of agent-based dynamics which describes the collective
motion of N agents, each of which adjusts its velocity to a weighted average of velocities of its
neighbors 

ẋi = vi

v̇i =
1

degi

N∑
j=1

φ(|xi − xj |)(vj − vi)
(1.2)
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Here, the weighted average of the right of (1.2) is dictated by influence function φ(·) which is as-
sumed to be decreasing, and degi is a weighting normalization factor. Different agent based models
employ different degi’s, e.g., [CCP2017]. We focus here on two such models. The Cucker-Smale
(CS) model [CS2007] sets a uniform averaging degi ≡ N which leads to the symmetric interaction
kernel a(x, y) = φ(|x − y|). The Motsch-Tadmor (MT) model [MT2011] uses an adaptive normal-

ization degi =
∑

j φ(|xi−xj |) which leads to a(x, y, t) =
φ(|x− y|)

(φ ∗ ρ)(x, t)
. The kernel is non-symmetric

but normalized such that
∫
a(x, y, t)ρ(y, t)dy = 1. The dynamics of (1.2) can be described in

terms of the empirical distribution f(x,v, t) := 1
N

∑
j δx−xj(t) ⊗ δv−vj(t). For large crowds of N

agents, N � 1, a limiting distribution of the approximate form f(x,v, t) ≈ ρ(x, t)δ(v − u(x, t)) is
captured by the first two velocity moments, namely – the density ρ := 〈f(x,v, t)〉 and momentum
ρu := 〈vf(x,v, t)〉 satisfy the conservative system [HT2008, CCR2009, CFRT2010, MOA2010]

ρt +∇ · (ρu) = 0

(ρu)t +∇(ρu⊗ u) =
α(x, t)

(φ ∗ ρ)(x, t)

∫
φ(|x− y|)(u(y, t)− u(x, t))ρ(x, t)ρ(y, t)dy.

(1.3)

Here α(x, t) is the amplitude of alignment, α(x, t) = (φ ∗ ρ)(x, t) in the case of CS model, and
α(x, t) ≡ 1 in MT model. When classical solutions of these equations are restricted to the support
of ρ(·, t), one ends with the equivalent system (1.1) with a(x, y, t) = α(x, t)φ(|x− y|)/(φ ∗ ρ)(x, t),
namely 

ρt +∇ · (ρu) = 0,

ut + u · ∇u =
α(x, t)

(φ ∗ ρ)(x, t)

∫
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t)dy.

(1.4)

Since the alignment forcing on the right is non-local, dictated by the support of φ, it acts even
within the vacuum region where dist{x, supp{ρ(·, t)}} > 0, and (1.4) extends throughout Rn. We
elaborate on this issue in §1.3 below.

We note that the dynamics of both models can be interpreted in terms of the mean velocity
u(x, t)

ut + u · ∇u = α(x, t)
(
u(x, t)− u(x, t)

)
, u(x, t) :=

φ ∗ (ρu)(x, t)

(φ ∗ ρ)(x, t)
.

This formulation reveals that system (1.4) (and in its general form (1.1)) is dynamically aligned
towards the mean u(x, t), and its large time behavior is expected to approach a constant limiting
velocity. This is the flocking hydrodynamics alluded to in the title, where a finite-size of non-vacuum
state is approaching a limiting velocity as t→∞. Specifically, the dynamics can be characterized
in terms of the diameters

D(t) := sup
x,y∈supp{ρ(·,t)}

|x− y|, V (t) := sup
x,y∈supp{ρ(·,t)}

|u(x, t)− u(y, t)|.

The system (1.1) converges to a flock if there exists a finite D such that

sup
t>0

D(t) 6 D∞ and V (t)
t→∞−→ 0. (1.5)

This corresponds to the flocking behavior at the level of agent-based description [HT2008], [MT2011,
definition 1.1] where a cohesive flock of a finite diameter maxi,j |xi(t) − xj(t)| 6 D∞ < ∞, is
approaching a limiting velocity, maxi,j |vi(t)− vj(t)| → 0 as t→∞.

1.1. Strong solutions must flock. In this work we focus on the case where φ is global. Since the
agent based model (1.2) exhibit flocking behavior in this case, [MT2014], it is natural to to expect
a similar result for its macroscopic description (1.4). This is the content of the following theorem.
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Theorem 1.1 (Strong solutions must flock [TT2014]). Let (ρ(·, t),u(·, t)) ∈ (L∞ ∩ L1) ×W 1,∞

be a global strong solution of the system (1.4) subject to a compactly supported initial density
ρ0 = ρ(·, 0) > 0 and bounded initial velocity u0 = u(·, 0) ∈ W 1,∞. Assume that a monotonically
decreasing influence function φ 6 φ(0) = 1 is global in the sense that1

V0 < m0

∫ ∞
D0

φ(r)dr, m0 := |ρ0|1, (1.6)

where D0 and V0 are the initial diameters of non-vacuum density and velocity. Then (ρ,u) converges
to a flock at exponential rate, namely — the support of ρ(·, t) remains within a finite diameter D∞
whose existence follows from assumption (1.6)

sup
t>0

D(t) 6 D∞ where m0

∫ D∞

D0

φ(s)ds = V0, (1.7a)

and

V (t) 6 V0e
−κt −→ 0, κ :=

{
m0φ∞, CS model,
φ∞, MT model,

φ∞ := φ(D∞). (1.7b)

In particular, if |φ|1 = ∞ then there is an unconditional flocking in the sense that (1.7) holds for
all finite V0.

For the sake of completeness we provide below an alternative derivation of the exponential
alignment in (1.7), as an a priori bound instead of the “propagation along characteristics” argument
in [TT2014, Theorem 2.1]. To this end, we extend the scalar argument in [ST2017, Lemma 1.1] to
general systems using a projection argument employed in [MT2014, Theorem 2.3]. Fix an arbitrary
w ∈ Rn and project the CS model (1.4) on w to find

(∂t + u · ∇)〈u(x, t),w〉 =

∫
φ(|x− y|)

(
〈u(y, t),w〉 − 〈u(x, t),w〉

)
ρ(y, t)dy.

It follows that u+(t) := max
x∈supp{ρ(·,t)}

〈u(x, t),w〉 satisfies

d

dt
u+ =

∫
φ(|x+ − y|)

(
〈u(y, t),w〉 − 〈u(x+, t),w〉

)
ρ(y, t)dy

6 min
x,y∈supp ρ(·,t)

φ(|x− y|)
∫ (
〈u(y, t),w〉 − 〈u(x+, t),w〉

)
ρ(y, t)dy

Similarly, we have the lower bound on u−(t) := min
x∈supp{ρ(·,t)}

〈u(x, t),w〉

d

dt
u− > min

x,y∈supp{ρ(·,t)}
φ(|x− y|)

∫ (
〈u(y, t),w〉 − 〈u(x−, t),w〉

)
ρ(y, t)dy

The difference of the last two inequalities implies

d

dt
|u+(t)− u−(t)| 6 −φ(D∞)m0|u+(t)− u−(t)|, φ(D∞) = min

x,y∈supp{ρ(·,t)}
φ(|x− y|).

It follows that the CS velocity diameter, V (t) = sup
|w|=1

|u+(t) − u−(t)|, satisfies the bound (1.7b)

with κ = m0φ∞. The same argument follows for MT model with κ = φ∞, independently of m0.

1We let | · |p denote the usual Lp norm.



4 SIMING HE AND EITAN TADMOR

1.2. Critical thresholds. Theorem 1.1 raises the problem whether solutions of the hydrodynamic
model (1.4) remain smooth for all time. This question was addressed in [TT2014, CCTT2016], prov-
ing that the compactly supported initial data stay below certain critical threshold in configuration
space then initial smoothness propagates and as a result, the corresponding strong solutions will
flock. Recall the finite-time blow-up of compactly supported density in the presence of local pres-
sure [Si1985, LY1997] and even in the presence of global Poisson forcing [Ma1992]. In both cases,
a positive lower-bound on the (potential of) the forcing — the pressure, Poisson, etc, over the
finite supp{ρ(·, t)} leads to finite time blow up. In contrast, here the non-local character of the
influence function φ guarantees global regularity, at least for sub-critical initial data. This type
of conditional regularity for Eulerian dynamics depending on a critical threshold in configuration
space, was advocated in a series of papers [ELT2001, LT2002, LT2003, LT2004, HT2008, LL2013].
Here, we pursue this approach to derive sharp critical thresholds for propagation of regularity of
the two-dimensional flocking hydrodynamics.

1.3. Vacuum and the finite horizon alignment. According to (1.6), if the influence function is

global in the sense that

∫ ∞
φ(r)dr = ∞, then the alignment dynamics (1.4) admits unconditional

flocking in the sense that (1.7) holds for all V0’s. This holds for both the symmetric CS model
and non-symmetric MT model [MT2014, proposition 2.9]. In this case, alignment in (1.4) is active
throughout Rn, inside and outside supp{ρ(·, t)}. Indeed, one has a global lower-bound on the action
of alignment for all x ∈ Rn, [TT2014, proposition 6.1]

(φ ∗ ρ)(x, t) > m0φ(d(x, t) +D∞) > 0, d(x, t) = dist{x, supp{ρ(·, t)}}
The flocking behavior of such a global approach was pursued in [TT2014].
Another possible approach to study (1.4) is to focus on a specific initial configuration with finite
velocity variation V0 < ∞. Then, since supp{ρ(·, t)} cannot grow beyond a maximal diameter
of size D∞ dictated by (1.7a), it follows that the alignment term on the right of the underlying
conservative formulation (1.3),

φ(|x− y|)(u(y, t)− u(x, t))ρ(x, t)ρ(y, t) ≡ 0, |x− y| > D∞,

independently of the values of {φ(r), r > D∞}. Alternatively, we can fix a compactly support
influence function φ and view (1.7a) as a restriction on initial velocities whose variation is “not too
large”, so that they lead to flocking. With either one of these two points of view, the values of φ(r)
for r > D∞ play no role in the dynamics. We therefore may set φ(r)|r>D∞ ≡ 0 which in turn sets
a finite horizon on the action of alignment. Namely, the alignment in (1.4) is still active in the
vacuous annulus outside supp{ρ(·, t)},

A(t) := {x | 0 < dist{x, supp{ρ(·, t)}} < D∞},
and (1.4) applies in supp{ρ(·, t)} ∪A(t),
ρt +∇ · (ρu) = 0,

ut + u · ∇u =
α(x, t)

φ ∗ ρ

∫
φ(|x− y|)(u(y)− u(x))ρ(y)dy

 dist{x, supp{ρ(·, t)}} < D∞. (1.8a)

However, since φ(|x − y|)ρ(y) is supported for y’s in the intersection y ∈ Yx(t) := supp{ρ(·, t)} ∩
BD∞(x), it implies the alignment bound∣∣∣∣∫ φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t)dy

∣∣∣∣ 6 V (t) · |ρ(·, t)|∞ ×
∫
y∈Yx(t)

φ(|x− y|)dy.

It follows that the alignment on the right of (1.8a) approaches zero, as x ∈ A(t) approaches the
“horizon” boundary dist{x, supp{ρ(·, t)}} = D∞ and vol(Yx(t))→ 0. In particular, (φ∗ρ)(x, t) ≡ 0
beyond the horizon dist{x, supp{ρ(·, t)}} > D∞, where the momentum equation is reduced to
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inviscid pressureless equations, ut + u · ∇u = 0. Accordingly, (1.8a) can be complemented with
constant far-field boundary conditions, in agreement with [TT2014, Remarks 2.8 & 6.6],

u(x, t) ≡ u∞, for dist{x, supp{ρ(·, t)}} > D∞. (1.8b)

2. Cucker-Smale hydrodynamics

2.1. Global regularity. We begin by recalling the one-dimensional Cucker-Smale model for (ρ, u) :
(R,R+) 7→ (R+,R),

ρt + (ρu)x = 0,

ut + uux =

∫
R
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t)dy

(x, t) ∈ (R,R+). (2.1)

In [CCTT2016] it was proved that (2.1) has a global classical solution if and only if the initial data
satisfies

∂xu0(x) > −(φ ∗ ρ0)(x), for all x ∈ R. (2.2)

Condition (2.2) separates the space of initial configurations into two distinct regimes: a sub-critical
regime of initial data satisfying ∂xu0(x) > −φ∗ρ0(x), ∀x ∈ supp(ρ0), which guarantee global smooth
solutions; and a supercritical regime of initial conditions such that ∂xu0(x0) 6 −φ∗ρ0(x0) for some
x0 ∈ R, which leads to a finite time blowup. This is a typical one-dimensional example for the
critical threshold behavior. Condition (2.2) provides a sharp improvements to the earlier critical
threshold results in [ST1992, LT2001, TT2014]. Recent results in [ST2016, DKRT2017] prove the

global regularity of (2.1) for singular kernels φ(|x|) = |x|−(1+α) for α ∈ (0, 2) independent of any
finite critical threshold. Singularity helps!.

A first attempt to extend the study of critical threshold to the two-dimensional CS model was
derived in [TT2014]. Here, we improve this result with a simplified derivation of a sharper critical
threshold condition, leading to alignment decay of order e−κt. We recall (1.7b) which set κ = m0φ∞
in the present case of CS model.

Theorem 2.1 (Critical threshold for 2D Cucker-Smale hydrodynamics). Consider the two-dimensional
CS model 

ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t)dy

 x ∈ R2, t > 0, (2.3)

subject to initial conditions, (ρ0,u0) ∈ (L1
+(R2),W 1,∞(R2)), with compactly supported density,

D0 <∞, and such that the variation of the initial velocity satisfies the strengthened bound

V0 6 m0 ·min

{
|φ|1,

φ2∞
4|φ′|∞

}
, V0 = max

x,y∈supp(ρ0)
|u0(x)− u0(y))|, φ∞ = φ(D∞). (2.4)

Assume that the following critical threshold condition holds.
(i) The initial velocity divergence satisfies

div u0(x) > −φ ∗ ρ0(x) for all x ∈ R2. (2.5)

(ii) Let S = 1
2{(∂jui + ∂iuj)} denote the symmetric part of the velocity gradient with eigenvalues

µi = µi(S). Then the initial spectral gap ηS0
:= µ2(S0)− µ1(S0) is bounded

max
x

∣∣ηS0
(x)
∣∣ 6 1

2
m0φ∞, ηS = µ2(S(x, t))− µ1(S(x, t)). (2.6)

Then the class of such sub-critical initial conditions (2.5),(2.6) admit a classical solution

(ρ(·, t),u(·, t)) ∈ C(R+;L∞ ∩ L1(R2)) × C(R+; Ẇ 1,∞(R2)) with large time hydrodynamics flocking
behavior (1.7b), max

x,y∈supp(ρ(·,t))
|u(x, t)− u(y, t)| . e−κt.
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Before turning to the proof of theorem 2.1, we comment on its assumptions.

Remark 2.1 (on the critical threshold (2.5),(2.6)). Theorem 2.1 recovers the one-dimensional
critical threshold (2.2). It amplifies the same theme of critical threshold required for global regularity
of other two-dimensional Eulerian dynamics found in restricted Euler-Poisson [LT2003], rotational
Euler [LT2004],..., namely — if the initial divergence is “not too negative” as in (2.5), and the
initial spectral gap is “not too large” as in (2.6), then global regularity persists for all time. In

particular, since ηS =
√

(∂1u1 − ∂2u2)2 + (∂1u2 + ∂2u1)2 we find that both (2.5),(2.6) hold if

|∂jui(x, 0)| 6 1

4
√

2
m0φ∞.

Remark 2.2 (on the finite variation (2.4)). Observe that (2.4) places a restriction on the size of
V0 even in the case of unconditional flocking, |φ|1 = ∞. Specifically, recall that V0 dictates the
maximal diameter of the flock in (1.7a) and thus, (2.4) amounts to∫ D∞

D0

φ(s)ds 6
φ2(D∞)

4 maxs6D∞ |φ′(s)|
. (2.7)

Since the term on the left is increasing while the term on the right is decreasing as functions of D∞,
it follows that (2.7) is satisfied for diameters D∞ up to some maximal finite size, that is — the

condition made in (2.4) is met for finite V0 = m0

∫ D∞

φ(s)ds depending on the influence function

φ. This finite restriction on V0 can probably be improved, but unlike the one-dimensional case it
cannot be completely removed. In fact, since V0 6 (µ2(S0) + ω0)D∞, the bound sought in (2.4)
places a purely two-dimensional restriction on the size of initial vorticity.

Remark 2.3 (on the finite horizon). Observe that in the case of alignment with a finite horizon, the
critical threshold (2.5) requires that div u0(x) > 0 for dist{x, supp{ρ0}} > D∞. This is precisely
the critical threshold condition which rules out finite time blow-up in the pressure-less equations
[Ta2017], which is satisfied when prescribing far-field constant velocity (1.8b). In this case, the
critical threshold (2.5) needs to be verfied within the finite horizon dist{x, supp{ρ0}} < D∞.

Proof. Our purpose is to show that the derivative {∂jui} are uniformly bounded. We proceed in
four steps.

Step #1 — the dynamics of div u + φ ∗ ρ. Differentiation of (1.1) implies that the 2 × 2 velocity
gradient matrix, Mij := ∂jui, satisfies

Mt + u · ∇M +M2 = −(φ ∗ ρ)M +R, Rij := ∂jφ ∗ (ρui)− ui∂jφ ∗ ρ. (2.8)

The entries of the residual matrix {Rij} can bounded by the commutator estimate [TT2014, propo-
sition 4.1] in terms of V (t) = sup

supp(ρ)
|ui(x, t)− ui(y, t)| 6 V0e−κt,

|Rij | =
∣∣∣∣∫

Rn

∂jφ(|x− y|)(ui(y, t)− ui(x, t))ρ(y, t)dy

∣∣∣∣ 6 |φ′|∞m0V0e
−κt, κ = m0φ∞.

The first step is to bound the divergence: taking the trace of (2.8) we find that d := ∇ · u satisfies

dt + u · ∇d + TrM2 = −(φ ∗ ρ)d + TrR.

Expressed in terms of the material derivative along particle path, X ′ := (∂t + u · ∇)X, we have
d′ + TrM2 = −(φ ∗ ρ)d + TrR. We now make a key observation that TrR is in fact an exact
derivative along particle path. Indeed, as in [CCTT2016] we invoke the mass equation,

TrR = φ ∗ ∇ · (ρu)− u · ∇φ ∗ ρ = −(φ ∗ ρ)t − u · ∇φ ∗ ρ = −(φ ∗ ρ)′,
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and we end up with
(d + φ ∗ ρ)′ + TrM2 = −(φ ∗ ρ)d. (2.9)

To proceed, we express TrM2 ≡
d2 + η2

M

2
in terms of the spectral gap, ηM := λ2(M) − λ1(M),

associated with the eigenvalues of M ,

(d + φ ∗ ρ)′ = −1

2
η2
M
− 1

2
d(d + 2φ ∗ ρ). (2.10)

We need to follow the dynamics of the spectral gap ηM . To this end, one may try to use the spectral
dynamics associated with M , [LT2002]: by (2.8) the λi’s satisfy

λ′i + λ2i = −(φ ∗ ρ)λi + 〈`i, Rri〉, i = 1, 2,

where {`i, ri} are the left and right eigenvectors associated with λi, normalized such that 〈`i, ri〉 = 1.
Taking the difference of these two equations shows that the spectral gap ηM = λ2−λ1, satisfies the
transport equation

η′
M

+ (d + φ ∗ ρ)ηM = 〈`2, Rr2〉 − 〈`1, Rr1〉.
Here one faces the difficulty which arises with the term on the right, namely — even with the
control of the entries {Rij}, we may still encounter an ill-conditioned M with |`i| · |ri| � 1 so that
the magnitude of this term is left unchecked. To circumvent this difficulty, we proceed along the
lines argued in [Ta2017]: we split M into its symmetric and antisymmetric parts M = S + Ω and
use the identity2

η2
M
≡ η2

S
− 4ω2, M = S + Ω, Ω :=

(
0 −ω
ω 0

)
, (2.11)

where ω is the scaled vorticity3 ω = 1
2(∂1u2 − ∂2u1). Expressed in terms of ηS , the trace dynamics

(2.10) now reads

(d + φ ∗ ρ)′ =
1

2
(4ω2 − η2

S
)− 1

2
d(d + 2φ ∗ ρ).

This calls for the introduction of the new “natural” variable e = d + φ ∗ ρ, satisfying

e′ =
1

2

(
(φ ∗ ρ)2 + 4ω2 − η2

S
− e2

)
. (2.12)

Our purpose is to show that {x | e(x, t) > 0} is invariant region of the dynamics (2.12).

Step #2 — bounding the spectral gap ηS . Consider the dynamics of the symmetric part of (2.8)

S′ + S2 = ω2I2×2 − (φ ∗ ρ)S +Rsym, Rsym =
1

2
(R+R>),

The spectral dynamics of its eigenvalues, µ2(S) > µ1(S), is governed by

µ′i + µ2i = ω2 − (φ ∗ ρ)µi +
〈
si, Rsymsi

〉
(2.13)

driven by the orthonormal eigenpair {s1, s2} of the symmetric S. Taking the difference, we find
that ηS := µ2(S)− µ1(S) > 0 satisfies,

η′
S

+ eηS = q, e = d + φ ∗ ρ. (2.14)

This is the same dynamics found with ηM except that the different residual on the right of (2.14)
given by

q :=
〈
s2, Rsyms2

〉
−
〈
s1, Rsyms1

〉
,

is now controlled by the size of {Rij}: since si are normalized,

|q(·, t)| 6 2 max
ij
|Rij(·, t)| 6 2|φ′|∞m0V0e

−κt, κ = m0φ∞. (2.15)

2Equating the trace of M2 with that of S2 + Ω2 +SΩ + ΩS we find TrM2 = TrS2− 2ω2. Using TrX2 = 1
2
(d2 + η2

X
)

with X = M on the left and X = S on the right implies (2.11).
3The use of such scaling simplifies the computation below.
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Hence, as long as e(·, t) remains positive then ηS remain uniformly bounded

|ηS (x, t)| 6 max
x
|ηS (x, 0)|+ 2

|φ′|∞
φ∞

V0 < max
x
|ηS (x, 0)|+ 1

2
m0φ∞ < m0φ∞ (2.16)

The first inequality on the right follows from integration of (2.14)-(2.15); the second follows from
the V0-bound in (2.4) and the third from the assumed bound on ηS0

in (2.6).

Step #3 — the invariance of e(·, t) > 0 . We return to (2.12): expressed in terms of c(x, t) :=√
(φ ∗ ρ)2 − η2

S
we have

e′ >
1

2

(
c2(x, t)− e2

)
, c(x, t) =

√
(φ ∗ ρ)2 − η2

S
. (2.17)

Observe that c(·) is well-defined in R: the upper-bound (2.16) and the lower-bound φ ∗ ρ > m0φ∞
imply that as long as e > 0, the right term on the right of (2.17) remains boundedly positive

c(x, t) >
√
m2

0φ
2
∞ −max

x
η2
S
(x, t) > cmin > 0.

Since e′ > 1
2(c2min − e2) = 1

2(cmin − e)(cmin + e), it follows that e is increasing whenever e ∈
(−cmin, cmin) and in particular, if e0 > 0 then e(x, t) remains positive at later times. Thus, if the
initial data are sub-critical in the sense that (2.5) holds

e0 = div u0(x) + φ ∗ ρ0(x) > 0,

then e(·, t) > 0 and ηS (·, t) remains bounded.

Step #4 — an upper-bound of e(·, t). The lower-bound e > 0 implies that the vorticity is bounded.

Indeed, the anti-symmetric part of (2.8) yields that the vorticity ω = 1
2 TrJM satisfies

ω′ + eω =
1

2
Tr JR, J =

(
0 −1
1 0

)
(2.18)

hence

|ω|′ 6 −e|ω|+ 1

2
|q|, |q(·, t)| 6 2|φ′|∞m0V0e

−κt, κ = m0φ∞, (2.19)

and we end up with same upper-bound on ω as with ηS ,

|ω(x, t)| 6 ωmax, ωmax := max
x
|ω0|+

1

2
m0φ∞. (2.20)

Returning to (2.12) we have (recall φ 6 1)

e′ 6
1

2

(
(φ ∗ ρ)2 + 4ω2 − e2

)
6

1

2

(
m2

0 + 4ω2
max − e2

)
,

which implies that e(x, t) 6 emax < ∞. The uniform bound on e implies that div u is uniformly
bounded, |div u| 6 |e|∞ + |φ ∗ ρ|∞ 6 emax +m0, and together with the bound on the spectral gap
(2.16), it follows that the symmetric part {Sij} is bounded. Finally, together with the vorticity
bound (2.20) it follows that {∂jui} are uniformly bounded which completes the proof. �

Remark 2.4. Observe that the region of sub-critical configuration leading global regularity becomes
larger for |ω0| � 1 in agreement with the statements made in [LT2004, CT2008] that rotation
prevents or at least delays finite-time blow-up. Specifically, if |ω0(·)| > ωmin > 0 then one can

set a larger lower barrier c =
√

(φ ∗ ρ)2 + 4ω2
min − η2S in (2.17) leading to the improved threshold

div u0 > −φ∗ρ0−ωmin. In particular, if ω is large enough so that 4ω2−η2S > 0, that is — if M has
complex-valued eigenvalues, then the invariance of the positivity of e follows at once from the fact
that (2.12) is dominated equation by e′ > 1

2

(
(φ ∗ ρ)2 − e2

)
. As in the 2D restricted Euler-Poisson

equations [LT2003], the difficulty lies with the case of real eigenvalues.
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Remark 2.5. The proof of theorem 2.1 reveals two main aspects. First, the commutator structure
of the alignment term on the right of (2.3)2, expressed as [φ∗, u](ρ), leads to the ‘residual terms’
Rij with exponentially decaying bound. The role of commutator structure was highlighted in our
recent work [ST2016]. Second, the use of spectral dynamics, [LT2002, LT2003, LL2013], to trace
the propagation of regularity for the remaining, non-residual terms in (2.8).

2.2. Fast alignment. We extend the one-dimensional arguments of [ST2016] which show that
exponentially rapid convergence towards a flocking state, consisting of a constant 2-vector velocity
{ū ∈ R2 and a traveling density profile ρ̄(x, t) = ρ∞(x − tū)}. We only indicate the main aspects
in the passage to the present system. We start by noting that the positivity of e implies more than
the mere boundedness of the spectral gap ηS and the vorticity ω. Indeed, (2.14) and (2.19) imply
that these quantities follow the exponential decay of q in (2.15)

|ηS(·, t)|∞ + |ω(·, t)|∞ . e−κt.

This shows that modulo rapidly decaying error terms E(t) of order E(t) . e−κt, equation (2.12)
which governs e takes the form

et + u · ∇e =
1

2

(
h2 − e2

)
+ E(t), h := φ ∗ ρ

Moreover, convolving the mass equation with φ we find

ht + u · ∇h =

∫
∇φ(|x− y|) · (u(x, t)− u(y, t))ρ(y, t)dy. (2.21)

Observe that the quantity on the right of rapidly decaying, being upper-bounded by . |φ′|∞V (t) .
e−κt. Hence, the difference d = e− h satisfies

dt + u · ∇d = −1

2
(e + h)d + E(t).

The positivity of e + h then implies the rapid decay of the divergence, | div u(·, t)|∞ . e−κt. The
exponential decay of the divergence, the vorticity and the spectral gap imply that |∂jui(·, t)|∞ .
e−κt. Let ū be a large-time limiting value of u(·, t). The mass equation reads

ρt + ū · ∇ρ = −dρ+ (ū− u) · ∇ρ.

The term on the right is rapidly decaying because d and (ū− u) are, and one concludes along the
lines of [ST2017], that there exists a traveling density profile such that ρ(x, t)− ρ∞(x− tū)→ 0.

3. Motsch-Tadmor hydrodynamics: global regularity and fast alignment

In this section, we study the flocking hydrodynamics which arises from MT model (1.5) with
κ = φ∞. We begin by recalling the one-dimensional case

ρt + (ρu)x = 0, (x, t) ∈ (R,R+)

ut + uux =

∫
φ(|x− y|)

(φ ∗ ρ)(x, t)
(u(y, t)− u(x, t))ρ(y, t)dy.

(3.1)

System (3.1) was recently studied in [BRSW2015], as the hydrodynamic description for agent-based
model of “emotional contagion”, and in [GG2017] in the context of stable swarming. In [CCTT2016]
it was proved that (3.1) has a global classical solution for sub-critical initial data such that

∂xu0(x) > −σ+(V0) for all x ∈ R, (3.2)

for a certain critical curve σ+ > 0. We now make a precise statement of the critical threshold for
both the one - and two-dimensional MT model.
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Theorem 3.1 (Critical threshold for 2D Motsch-Tadmor hydrodynamics). Consider the two-
dimensional MT model in (x, t) ∈ (R2,R+),

ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
a(x, y, t)(u(y, t)− u(x, t))ρ(y, t)dy, a(x, y, t) :=

φ(|x− y|)
(φ ∗ ρ)(x, t)

,
(3.3)

subject to initial conditions (ρ0,u0) ∈ (L1,W 1,∞(R2)), with compactly supported density, D0 < ∞
and initial velocity of finite variation

V0 6 m0 ·min

{
|φ|1,

φ2∞
4|φ′|∞(1 + 2φ∞)

}
, φ∞ = φ(D∞). (3.4)

Assume that the following critical threshold condition holds.
(i) The initial velocity divergence satisfies

div u0(x) > −1 for all x ∈ R2. (3.5)

(ii) Then the initial spectral gap ηS0
:= µ2(S0)− µ1(S0) is bounded

max
x

∣∣ηS0
(x)
∣∣ 6 1

2
, ηS = µ2(S(x, t))− µ1(S(x, t)). (3.6)

Then the class of such sub-critical initial conditions (3.5),(3.6) give rise to a classical solution

(ρ(t),u(t) ∈ C(R+;L∞(R2)) × C(R+; Ẇ 1,∞(R2)) with large time hydrodynamics flocking behavior
(1.7b) max

x∈supp(ρ)
|u(x, t)− u(y, t)| . e−κt.

Remark 3.1. In the case of finite horizon alignment encoded in (1.8) with α = φ ∗ ρ, the critical
thresholds (3.5),(3.6) can be restricted to the finite set dist{x, supp{ρ0}}.

Proof. As before, we trace the dynamics of M = ∂jui,

Mt + u · ∇M +M2 = −M +R, (3.7)

where the entries of the residual matrix {Rij} are given by

Rij(x, t) :=

∫
y∈R2

∂ja(x, y, t)(ui(y, t)− ui(x, t))ρ(y, t)dy, a(x, y, t) =
φ(|x− y|)

(φ ∗ ρ)(x, t)

Expressed in terms of the operator A(w) :=
∫
y a(x, y, t)w(y)dy, the entries of R have the com-

mutator structure Rij = ∂j [A, ui](ρ) which can be estimated by the commutator bound [TT2014,
proposition 7.1] in terms of V (t) = supsupp(ρ)|ui(x, t)− ui(y, t)|,

|Rij(x, t)| =
∣∣∂j [A, ui](ρ)

∣∣ 6 |φ′|∞
φ∞

V0e
−κt, κ = φ∞.

We now proceed as before. As a first step, we follow the dynamics of the d = div u: taking the
trace of (3.7) we find

d′ +
1

2
(d2 + η2

S
) = ω2 − d + r, r := TrR 6 2

|φ′|∞
φ∞

V0. (3.8)

This calls for the introduction of a new variable e := d + 1 where the last equation recast into the
Riaccti’s form

e′ =
1

2

(
1− η2

S
+ 2r − e2

)
+ ω2. (3.9)

Our purpose si to show that the {x | e(x, t) > 0} is invariant of the dynamics (3.9) and to this end
we need to bound the spectral gap ηS .

The second step is to follow the spectral dynamics associated with the symmetric part of (3.7)

µ′i(S) + µ2i (S) = ω2 − µi(S) +
〈
si, Rsymsi

〉
.
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Taking the difference and recalling that si are the normalized eigenvectors of S we find the dynamics
of the spectral gap,

η′
S

+ eηS = q, |q| 6 2 max |Rij(x, t)| 6 2
|φ′|∞
φ∞

V0e
−κt. (3.10)

It follows that as long as e(·, t) is positive then

|ηS (x, t)| 6 max
x
|ηS0

(x)|+ 2
|φ′|∞
φ2∞

V0 <
1

2
, (3.11)

and therefore c :=
√

1− η2
S

+ 2r has the lower bound c(x, t) > cmin > 0, where

max
x
|ηS0

(x)|+
(

2
|φ′|∞
φ2∞

+ 4
|φ′|∞
φ∞

)
V0 6 1− c2min < 1

This inequality follows from the assumed bounds on V0 in (3.4) and on the initial spectral gap (3.6),
and the bound of r in (3.8). As a final step, we return to (3.9) to find, e′ > 1

2(c2min − e2), which
guarantees that if the critical threshold (3.5) holds, i.e., if e0 > 0 then e(x, t) > 0 at later time.
Moreover, since e(·, t) > 0, the vorticity equation, ω′ + eω = 1

2 Tr JR, shows that |ω(·, t)| remains
bounded in terms of maxx |Rij(x, t)| . rmax <∞. The transport equation (3.9) implies

e′ 6
1

2

(
1 + 2r + 2ω2 − e2

)
6

1

2

(3

2
+ 2ω2

max − e2
)
,

and a uniform upper-bound of e(·, t) 6 emax <∞ follows. �

Remark 3.2. In the one-dimensional case, ηS = ω ≡ 0 and the dynamics of e = d + 1 in (3.9)
simplifies into e′ = 1

2(1 + 2r − e2). Hence, the variation bound (3.4) can be related to

V0 < m0 min

{
|φ|1 ,

1

4

φ∞
|φ′|∞

}
so that 1+2r > cmin > 0 and e′ > 1

2(cmin−e2) implies global smoothness under the critical threshold
condition ∂xu0(x) > −1.

Remark 3.3. One can follow the argument in section 2.2 to conclude that the same rapid alignment
holds for MT model. Indeed, the MT model enhances the convergence rate towards a limiting flocking
state.
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